300 research outputs found

    Risk factors for dementia development, frailty, and mortality in older adults with epilepsy – A population-based analysis

    Get PDF
    Objective: Although the prevalence of comorbid epilepsy and dementia is expected to increase, the impact is not well understood. Our objectives were to examine risk factors associated with incident dementia and the impact of frailty and dementia on mortality in older adults with epilepsy. Methods: The CALIBER scientific platform was used. People with incident epilepsy at or after age 65 were identified using Read codes and matched by age, sex, and general practitioner to a cohort without epilepsy (10:1). Baseline cohort characteristics were compared using conditional logistic regression models. Multivariate Cox proportional hazard regression models were used to examine the impact of frailty and dementia on mortality, and to assess risk factors for dementia development. Results: One thousand forty eight older adults with incident epilepsy were identified. The odds of having dementia at baseline were 7.39 [95% CI 5.21–10.50] times higher in older adults with epilepsy (n = 62, 5.92%) compared to older adults without epilepsy (n = 88, 0.86%). In the final multivariate Cox model (n = 326), age [HR: 1.20, 95% CI 1.09–1.32], Charlson comorbidity index score [HR: 1.26, 95% CI 1.10–1.44], and sleep disturbances [HR: 2.41, 95% CI 1.07–5.43] at baseline epilepsy diagnosis were significantly associated with an increased hazard of dementia development over the follow-up period. In a multivariate Cox model (n = 1047), age [HR: 1.07, 95% CI 1.03–1.11], baseline dementia [HR: 2.66, 95% CI 1.65–4.27] and baseline e-frailty index score [HR: 11.55, 95% CI 2.09–63.84] were significantly associated with a higher hazard of death among those with epilepsy. Female sex [HR: 0.77, 95% CI 0.59–0.99] was associated with a lower hazard of death. Significance: The odds of having dementia were higher in older adults with incident epilepsy. A higher comorbidity burden acts as a risk factor for dementia, while prevalent dementia and increasing frailty were associated with mortality

    Rapid Processing of Both Reward Probability and Reward Uncertainty in the Human Anterior Cingulate Cortex

    Get PDF
    Reward probability and uncertainty are two fundamental parameters of decision making. Whereas reward probability indicates the prospect of winning, reward uncertainty, measured as the variance of probability, indicates the degree of risk. Several lines of evidence have suggested that the anterior cingulate cortex (ACC) plays an important role in reward processing. What is lacking is a quantitative analysis of the encoding of reward probability and uncertainty in the human ACC. In this study, we addressed this issue by analyzing the feedback-related negativity (FRN), an event-related potential (ERP) component that reflects the ACC activity, in a simple gambling task in which reward probability and uncertainty were parametrically manipulated through predicting cues. Results showed that at the outcome evaluation phase, while both win and loss-related FRN amplitudes increased as the probability of win or loss decreased, only the win-related FRN was modulated by reward uncertainty. This study demonstrates the rapid encoding of reward probability and uncertainty in the human ACC and offers new insights into the functions of the ACC

    Event-Related Potential Correlates of Performance-Monitoring in a Lateralized Time-Estimation Task

    Get PDF
    Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes, whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered components.With an evenly distributed set of trials and a split-half reliability for all ERP components ≥.85 the task is well suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in clinical populations

    Internal and external information in error processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of self-generated and externally provided information in performance monitoring is reflected by the appearance of error-related and feedback-related negativities (ERN and FRN), respectively. Several authors proposed that ERN and FRN are supported by similar neural mechanisms residing in the anterior cingulate cortex (ACC) and the mesolimbic dopaminergic system. The present study is aimed to test the functional relationship between ERN and FRN. Using an Eriksen-Flanker task with a moving response deadline we tested 17 young healthy subjects. Subjects received feedback with respect to their response accuracy and response speed. To fulfill both requirements of the task, they had to press the correct button and had to respond in time to give a valid response.</p> <p>Results</p> <p>When performance monitoring based on self-generated information was sufficient to detect a criterion violation an ERN was released, while the subsequent feedback became redundant and therefore failed to trigger an FRN. In contrast, an FRN was released if the feedback contained information which was not available before and action monitoring processes based on self-generated information failed to detect an error.</p> <p>Conclusion</p> <p>The described pattern of results indicates a functional interrelationship of response and feedback related negativities in performance monitoring.</p

    Response Monitoring in De Novo Patients with Parkinson's Disease

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is accompanied by dysfunctions in a variety of cognitive processes. One of these is error processing, which depends upon phasic decreases of medial prefrontal dopaminergic activity. Until now, there is no study evaluating these processes in newly diagnosed, untreated patients with PD ("de novo PD"). METHODOLOGY/PRINCIPAL FINDINGS: Here we report large changes in performance monitoring processes using event-related potentials (ERPs) in de novo PD-patients. The results suggest that increases in medial frontal dopaminergic activity after an error (Ne) are decreased, relative to age-matched controls. In contrast, neurophysiological processes reflecting general motor response monitoring (Nc) are enhanced in de novo patients. CONCLUSIONS/SIGNIFICANCE: It may be hypothesized that the Nc-increase is at costs of dopaminergic activity after an error; on a functional level errors may not always be detected and correct responses sometimes be misinterpreted as errors. This pattern differs from studies examining patients with a longer history of PD and may reflect compensatory processes, frequently occurring in pre-manifest stages of PD. From a clinical point of view the clearly attenuated Ne in the de novo PD patients may prove a useful additional tool for the early diagnosis of basal ganglia dysfunction in PD

    How a co-actor’s task affects monitoring of own errors: evidence from a social event-related potential study

    Get PDF
    Efficient flexible behavior requires continuous monitoring of performance for possible deviations from the intended goal of an action. This also holds for joint action. When jointly performing a task, one needs to not only know the other’s goals and intentions but also generate behavioral adjustments that are dependent on the other person’s task. Previous studies have shown that in joint action people not only represent their own task but also the task of their co-actor. The current study investigated whether these so-called shared representations affect error monitoring as reflected in the response-locked error-related negativity (Ne/ERN) following own errors. Sixteen pairs of participants performed a social go/no-go task, while EEG and behavioral data were obtained. Responses were compatible or incompatible relative to the go/no-go action of the co-actor. Erroneous responses on no-go stimuli were examined. The results demonstrated increased Ne/ERN amplitudes and longer reaction times following errors on compatible compared to incompatible no-go stimuli. Thus, Ne/ERNs were larger after errors on trials that did not require a response from the co-actor either compared to errors on trials that did require a response from the co-actor. As the task of the other person is the only difference between these two types of errors, these findings show that people also represent their co-actor’s task during error monitoring in joint action. An extension of existing models on performance monitoring in individual action is put forward to explain the current findings in joint action. Importantly, we propose that inclusion of a co-actor’s task in performance monitoring may facilitate adaptive behavior in social interactions enabling fast anticipatory and corrective actions

    Motor Adaptation Scaled by the Difficulty of a Secondary Cognitive Task

    Get PDF
    Background: Motor learning requires evaluating performance in previous movements and modifying future movements. The executive system, generally involved in planning and decision-making, could monitor and modify behavior in response to changes in task difficulty or performance. Here we aim to identify the quantitative cognitive contribution to responsive and adaptive control to identify possible overlap between cognitive and motor processes. Methodology/Principal Findings: We developed a dual-task experiment that varied the trial-by-trial difficulty of a secondary cognitive task while participants performed a motor adaptation task. Subjects performed a difficulty-graded semantic categorization task while making reaching movements that were occasionally subjected to force perturbations. We find that motor adaptation was specifically impaired on the most difficult to categorize trials. Conclusions/Significance: We suggest that the degree of decision-level difficulty of a particular categorization differentially burdens the executive system and subsequently results in a proportional degradation of adaptation. Our results suggest
    corecore